Двигатели внутреннего сгорания. Рабочие процессы
Работа большинства современных двигателей внутреннего сгорания (ДВС) как карбюраторных, так и дизельных основана на способе, включающем впуск свежего заряда рабочего тела в рабочие камеры циклически изменяющегося объема, сжатие, воспламенение и сгорание рабочей смеси, последующее расширение рабочего тела и выпуск отработавших газов (ОГ) из рабочих камер.
Данный способ реализуется в четырехтактных поршневых ДВС, а также практически во всех известных роторных двигателях.
Рисунок 1.
Индикаторная диаграмма осуществления рабочих процессов описанным способом показана на Рисунке 1, где обозначено:
V | – | текущий объем рабочей камеры; |
p | – | давление в рабочей камере; |
po | – | давление на входе в рабочую камеру; |
r | – | точка начала впуска свежего заряда рабочего тела в рабочую камеру; |
a | – | точка окончания впуска свежего заряда; |
f | – | точка воспламенения рабочего тела; |
c | – | точка окончания сжатия; |
z | – | точка достижения максимального давления; |
b | – | точка начала выпуска отработавших газов. |
Основными показателями эффективности осуществления рабочих процессов в ДВС являются среднее индикаторное давление (pi) и индикаторный КПД (ηi) /1/.
Среднее индикаторное давление определяет мощность, которую может развить ДВС на том или ином режиме работы (при постоянной угловой скорости вращения вала двигателя), а индикаторный КПД – его экономичность.
Указанные показатели зависят от большого количества различных факторов, которые условно можно разделить на основные и второстепенные.
К группе основных факторов целесообразно отнести те, изменения которых оказывают непосредственное влияние на изменения pi и ηi.
К ним можно отнести следующие:
- степень сжатия рабочего тела;
- состав рабочей смеси;
- степень наполнения рабочего объема свежим зарядом;
- момент воспламенения рабочей смеси, скорость и длительность ее сгорания;
- давление и температура свежего заряда рабочего тела в момент его впуска в рабочие камеры;
- степень потерь теплоты в охлаждающую среду через стенки рабочих камер.
Все остальные факторы относятся к второстепенным, поскольку влияют на изменения pi и ηi не непосредственно, а через изменения основных.
Использование влияния основных факторов на индикаторные показатели ДВС лежит в основе большинства известных способов выбора их конструктивных характеристик и регулирования на различных режимах работы.
Наиболее благоприятно на индикаторные показатели ДВС (pi и ηi) влияет увеличение степени сжатия рабочего тела (ε), так как при этом одновременно увеличиваются как среднее индикаторное давление, так и индикаторный КПД.
Однако возможности увеличения степени сжатия в современных ДВС ограничены. Это связано с тем, что в двигателях с искровым зажиганием при больших степенях сжатия происходит преждевременное самовоспламенение рабочей смеси, и возникают детонационные явления, которые состоят в нарушении процесса горения и распространении ударных волн, что крайне отрицательно сказывается на работе двигателя. Вследствие отмеченного, степень сжатия в ДВС с искровым зажиганием не может превышать (6-10) единиц. Важнейшим преимуществом дизельных ДВС по сравнению с двигателями с искровым зажиганием является возможность увеличения в них степени сжатия рабочего тела (воздуха) до значительно больших значений – до (14-23) единиц. Однако дальнейшее ее увеличение малоэффективно, так как уже не дает заметного повышения pi и ηi и приводит лишь к недопустимому росту тепловых и механических нагрузок на детали двигателя, повышению потерь теплоты в охлаждающую среду, ухудшению условий смесеобразования и т.д.
Состав смеси характеризуется коэффициентом избытка воздуха (α) и оказывает весьма существенное влияние на индикаторные показатели ДВС. Зависимости pi(α) и ηi(α) при этом имеют максимальные значения, которые достигаются при разных составах рабочей смеси (разных значениях α). У дизелей максимум pi имеет место при слабо обедненной смеси (α ≈ 1), а максимум ηi – при сильно обедненной смеси (при α от 3 до 5). У двигателей с искровым зажиганием максимум pi достигается при обогащенной смеси (при α от 0,7 до 0,9), а максимум ηi – при α от 1,3 до 1,5 /1/.
Изменение состава смеси является основным способом регулирования мощности дизельных ДВС на различных режимах работы и осуществляется изменением подачи топлива через форсунки. При уменьшении подачи топлива коэффициент избытка воздуха (α) увеличивается, а мощность ДВС уменьшается. С увеличением подачи топлива коэффициент α уменьшается, а мощность ДВС увеличивается. Максимальный индикаторный КПД при этом достигается при малых нагрузках, а при нагрузках, близких к максимальным, индикаторный КПД дизельных ДВС существенно меньше максимального.
Регулирование состава смеси применяется также и в двигателях с искровым зажиганием и осуществляется специальными дозирующими устройствами. Целью такого регулирования является автоматическое изменение α в соответствии с наивыгоднейшей характеристикой, которая предусматривает увеличение α (обеднение смеси) при частичных нагрузках и его уменьшение (обогащение смеси) на режимах максимальных нагрузок. При таком регулировании максимальный индикаторный КПД ДВС с искровым зажиганием, также как и у дизелей, достигается при малых нагрузках, а при максимальных нагрузках их индикаторный КПД существенно меньше максимального.
Степень наполнения рабочего объема ДВС свежим зарядом количественно оценивается коэффициентом наполнения (0 < ηv < 1) и оказывает сильное влияние, в основном, на среднее индикаторное давление, которое быстро уменьшается с уменьшением ηv. Индикаторный КПД с изменением ηv изменяется очень мало и остается практически постоянным. Изменение степени наполнения рабочего объема свежим зарядом посредством открытия и закрытия дроссельной заслонки является основным способом регулирования мощности ДВС с искровым зажиганием на различных режимах работы. На режимах максимальной мощности дроссельная заслонка полностью открыта (ηv = ηvmax), а для уменьшения мощности ДВС при уменьшении нагрузки дроссельную заслонку прикрывают (уменьшают ηv). С учетом упомянутого выше регулирования состава смеси максимальный индикаторный КПД двигателей с искровым зажиганием также, как и у дизелей, достигается при малых нагрузках, а при увеличении нагрузки индикаторный КПД уменьшается.
В дизельных ДВС степень наполнения рабочего объема воздухом не регулируется и остается практически постоянной.
Момент воспламенения рабочей смеси определяется углом опережения воспламенения (θвоспл) относительно верхней мертвой точки (ВМТ) и весьма сильно влияет на индикаторные показатели ДВС.
При увеличении θвоспл увеличиваются:
- отрицательная работа сжатия;
- отрицательное влияние на ηi увеличения теплоемкости рабочего тела от температуры в связи с возрастанием максимальной температуры цикла;
- потери теплоты в среду охлаждения вследствие увеличения температурного напора и интенсивности теплоотдачи;
- степень расширения рабочего тела вследствие завершения горения топлива и тепловыделения ближе в ВМТ.
Первые три фактора способствуют уменьшению pi и ηi, а четвертый – их увеличению. Противоположное влияние указанных факторов определяет существование оптимальных значений угла опережения воспламенения, при которых pi и ηi имеют максимальные значения. Каждому режиму работы двигателя соответствует свой оптимальный угол опережения воспламенения, на чем основаны способы управления работой ДВС посредством изменения моментов подачи управляющих воздействий на свечи зажигания в двигателях с искровым зажиганием и на форсунки для впрыска топлива в дизельных ДВС.
Скорость и длительность сгорания рабочей смеси в двигателях с искровым зажиганием какого-либо существенного влияния на их индикаторные показатели не оказывают, так как сгорание заранее подготовленной смеси в них происходит практически мгновенно и при практически неизменном объеме рабочих камер.
В отличие от карбюраторных двигателей с искровым зажиганием в дизельных ДВС впрыск топлива в рабочие камеры производится через форсунки и продолжается некоторое время уже после воспламенения рабочей смеси, вследствие чего скорость и длительность ее сгорания оказывают определенное влияние на характер тепловыделения и, соответственно, на индикаторные показатели ДВС. Это влияние выражается в том, что тепловыделение при малоизменяющемся (постоянном) объеме рабочих камер осуществляется не полностью и завершается тогда, когда их объем изменяется уже достаточно быстро, в результате чего индикаторный КПД и среднее индикаторное давление оказываются меньше тех, которыми они могли бы быть в случае полного завершения тепловыделения при постоянном (малоизменяющемся) объеме рабочих камер.
Увеличить скорость и уменьшить длительность сгорания топлива в дизельных ДВС и добиться за счет этого повышения индикаторного КПД и среднего индикаторного давления возможно при использовании различных способов улучшения характеристик впрыскивания и распыливания топлива, однако оно очень незначительно.
Увеличение давления свежего заряда рабочего тела в момент его впуска в рабочие камеры (pк) является одним из основных способов повышения среднего индикаторного давления ДВС и их мощностных характеристик, которые увеличиваются пропорционально степени повышения pк, и осуществляется путем наддува.
Поскольку при наддуве существенно возрастают максимальные значения давления (pz) и температуры (Тz) рабочего тела в рабочих камерах, то его применение возможно, в основном, в дизельных ДВС. Применение наддува в двигателях с искровым зажиганием в связи с опасностью возникновения детонации при увеличении pz и Тz весьма проблематично и требует принятия специальных мер по ее предотвращению.
Различают механический, газотурбинный, комбинированный и динамический наддувы.
Механический наддув осуществляется компрессором, привод которого соединен с валом двигателя. Существенным недостатком такой системы является снижение КПД двигателя, обусловленное необходимостью отбора части его мощности на привод компрессора.
При газотурбинном наддуве в качестве привода компрессора применяется газовая турбина, использующая энергию отработавших газов (ОГ), которые объединяются в единый агрегат (турбокомпрессор), что позволяет избежать отбора мощности с вала двигателя на привод компрессора и снижения КПД двигателя. Недостатками такой системы наддува являются ухудшение тяговых характеристик и приемистости двигателя, что обусловлено отсутствием механической связи агрегатов наддува с валом двигателя, инерционностью роторов турбокомпрессора и уменьшением энергии ОГ при малых нагрузках.
Для устранения этих недостатков используются системы комбинированного наддува, которые представляют собой определенные комбинации механического и газотурбинного наддува.
Для повышения плотности свежего заряда рабочего тела, подаваемого в рабочие камеры ДВС, могут использоваться также колебательные явления в системах газообмена, при которых перед впускными и выпускными клапанами периодически возникают волны сжатия и разрежения, обусловленные циклическим характером следования процессов газообмена.
Путем создания волны сжатия перед закрытием впускного клапана или волны разрежения при открытом выпускном клапане можно добиться весьма существенного увеличения массы свежего заряда, поступающего в рабочие камеры ДВС. Такой способ может быть осуществлен путем соответствующего выбора геометрических параметров системы газообмена и получил название динамического наддува.
При увеличении давления наддува (pк) одновременно возрастает и температура наддувочного воздуха (Тк), вследствие чего возрастают средние и максимальные температуры цикла, приводящие к увеличению теплоемкости рабочего тела и связанному с этим уменьшению индикаторного КПД, резкому возрастанию тепловых нагрузок на детали двигателя.
С целью снижения отрицательного влияния наддува на температуры цикла применяют охлаждение наддувочного воздуха (ОНВ), что позволяет снизить тепловые нагрузки на детали двигателя и предотвратить уменьшение индикаторного КПД цикла.
Потери теплоты в охлаждающую среду через стенки рабочих камер являются одним из основных видов потерь и оказывают существенное влияние как на индикаторный КПД, так и на среднее индикаторное давление. С их увеличением ηi и pi уменьшаются, а с уменьшением – увеличиваются. Эффективных способов их снижения до сих пор не разработано. Частичное уменьшение упомянутых потерь может быть достигнуто за счет применения для изготовления стенок рабочих камер и поршней материалов с малой теплопроводностью.
Однако, несмотря на многообразие приведенных выше возможностей для воздействия на характер осуществления рабочих процессов в современных четырехтактных ДВС описанным в начале раздела способом, повысить их максимальный КПД за счет использования указанных возможностей для оптимального выбора их конструктивных характеристик и параметров регулирования режимов работы больше, чем до (30-40)% у двигателей с искровым зажиганием и до (40-50)% у дизельных двигателей практически невозможно /1/.
Среднее индикаторное давление ДВС на номинальном режиме их работы при этом может составлять от 0,9 до 1,2 МПа у двигателей с искровым зажиганием и от 0,75 до 1,05 МПа у дизельных двигателей /1/.
Проведенный анализ показывает, что при осуществлении рабочих процессов в четырехтактных ДВС упомянутым выше традиционным способом, независимо от степени сжатия, состава рабочей смеси, характеристик воспламенения, сгорания и прочих параметров выпуск ОГ в них из рабочих камер в конце такта расширения происходит при высоком остаточном давлении, которое может составлять от 0,35 до 0,5 МПа у двигателей с искровым зажиганием и от 0,2 до 0,4 МПа у дизельных двигателей, что говорит о недостаточно полном использовании энергии продуктов сгорания топлива в процессе их расширения в рабочих камерах. Высокое давление при выпуске ОГ является также основным источником шума, создаваемого двигателем, поскольку он происходит при сверхзвуковой скорости. Добиться снижения давления ОГ при их выпуске из рабочих камер в рамках традиционного способа осуществления рабочих процессов в ДВС не представляется возможным.
Более полного использования энергии продуктов сгорания топлива в ДВС можно достичь разными путями.
Один из таких путей уже упомянут ранее и состоит в использовании энергии ОГ в газовой турбине, являющейся приводом компрессора для осуществления наддува. Однако, такой способ применим только в двигателях с наддувом и существенного прироста внешней по отношению к ДВС полезной работы не дает, поскольку энергия ОГ в этом случае затрачивается на обеспечение функционирования самого ДВС.
Наиболее полного использования энергии продуктов сгорания топлива непосредственно в рабочих камерах можно достичь в ДВС, в которых реализуются термодинамические циклы с продолженным расширением, у которых степень расширения рабочего тела больше степени его сжатия.
Осуществление таких термодинамических циклов, в частности, возможно в ДВС, в которых сжатие и расширение рабочего тела происходят в рабочих камерах разного объема.
Одним из таких ДВС является, например, двигатель, содержащий не менее одной пары цилиндров с возвратно-поступательно движущимися поршнями и головку, в которой размещен периодически сообщающийся с цилиндрами газораспределительный золотник, снабженный общей для обоих цилиндров камерой сгорания и кинематически связанный с валом двигателя. Цилиндры выполнены разного объема, причем цилиндр малого объема снабжен впускными органами и используется для сжатия рабочего тела, а цилиндр большого объема – газовыпускными и используется для его расширения /3/.
Однако, существенным недостатком таких двигателей является необходимость использования целого ряда дополнительных устройств, которые усложняют их конструкцию, увеличивают гидравлические и механические потери.
Нами разработан способ осуществления рабочих процессов в ДВС, позволяющий осуществить термодинамические циклы с продолженным расширением непосредственно в рабочих камерах четырехтактных ДВС без использования каких-либо дополнительных устройств, повысить их КПД, снизить создаваемый ими шум и уменьшить выбросы теплоты в окружающее пространство.
Список использованных источников
- Двигатели внутреннего сгорания. Книга 1. Теория рабочих процессов. В.Н. Луканин, К.А. Морозов, А.С. Хачиян и др. Под ред. В.Н. Луканина. – М., Высшая школа, 1995 г.
- Двигатели внутреннего сгорания. Книга 2. Динамика и конструирование. В.Н. Луканин, И.В. Алексеев, М.Г. Шатров и др. Под ред. В.Н. Луканина. – М., Высшая школа, 1995 г.
- Авторское свидетельство №828780 по кл. FO2 В41/02.